
1 Computation of first and second derivatives

for the paper "Asset Allocation by Variance

Sensitivity Analysis"

1.1 Notation

���� � = 1� ���� � asset returns
� = [�1� ���� ��−1]

′ portfolio weigths
��\� = [���1� ���� ����−1]′

�� = �′��\� + (1− �′�)���� portfolio returns

GARCH model:
�� =

√
	�
� 
�˜�������(0� 1)

	� = �′�
 �� = [1� � 2
�−1� 	�−1]

′, 
 = [�� �� �]′

In what follows we follow the conventions and rules on matrix differentiation
as in Appendix A.13 of Helmut Lutkepohl (1990), Introduction to Multiple Time
Series Analysis, Springer-Verlag.

1.2 Compute the first derivative (equation 3 in text)

In the rest of these pages, we indicate the explicit dependence of 
 on � by 
 (�).
Whenever this dependence is not made explicit, it means that we treat 
 as not
depending on �.

�	�(
 (�))

��
=

���(
 (�))′

��

 +

�
 (�)′

��
�� (1)

Compute ���(�(�))
��

first.

���(
 (�))
′

��
=

[
0(�−1×1)

�	 2

�−1

��

�
�−1(�(�))
��

]
(2)

where

�� 2
�−1

��
= 2��−1(��−1\� − ���−1�� ) (3)

and �
�−1(�(�))
��

can be computed recursively.

To compute ��(�)′

��
we apply Theorem 1:

�
(�)′

��
= − (���)

′︸ ︷︷ ︸
(�−1×3)

(���)
−1︸ ︷︷ ︸

(3×3)

(4)

where

��� =
�∑

�=1

�2��

�
�
′
(5)

1



��� =
�∑

�=1

�2��

�
��′
(6)

Note that �� = −0�5[ln(	�) + � 2
� 	�

−1] and

���

�

= −0�5

�	�

�

� (7)

where
� ≡

(
	−1
� − � 2

� 	
−2
�

)
(8)

�	�

�

= �� +

��′�
�



 (9)

��′�
�


=
[
0(3×2)

�
�−1

��

]
(10)

Therefore �2��
����′

can be computed as follows:

�2��

�
�
′
= −0�5

[
�	�

�


��

�
′
+�

�2	�

�
�
′

]
(11)

where

��

�
′
=

�	�

�
′
�̃ (12)

�̃ ≡
(
−	−2

� + 2� 2
� 	

−3
�

)
(13)

�2	�

�
�
′
=

���

�
′
+
��′�
�


+
(

′ ⊗ �3

) �

�
′
���

(
��′�
�


)
(14)

�

�
′
���

(
��′�
�


)
=

[
0(6×3)
�2
�−1

����′

]
≡ � (15)

Analogously, �2��
����′

is given by:

�2��

�
��′
= −0�5

[
�	�

�


��

��′
+�

�2	�

�
��′

]
(16)

where

��

��′
=

�	�

��′
�̃ − 	−2

�

�� 2
�

��′
(17)

�	�

��′
= 
′

���

��′
(18)

2



���

��′
=


 0(1×�−1)

�	 2

�−1

��′

�
�−1

��′


 (19)

�2	�

�
��′
=

���

��′
+
(

′ ⊗ �3

) �

��′
���

(
��′�
�


)
(20)

�

��′
���

(
��′�
�


)
=

[
0(6×�−1)
�2
�−1

����′

]
≡ �

(9×�−1)
(21)

1.3 Compute the second derivative (equation 4 in text)

�2
�(�(�))
����′

= ���(�(�))
′

��

��(�)
��′

+ ��(�)′

��

���(�(�))
��′

+

+
(

′ ⊗ ��−1

)
�
��′

���
(

���(�(�))
′

��

)
+

+
(
�� (
 (�))

′ ⊗ ��−1

)
�
��′

���
(

��(�)′

��

) (22)

We need to compute only �
��′

���
(

���(�(�))
′

��

)
and �

��′
���

(
��(�)′

��

)
, since ���(�(�))

′

��

has already been computed in (2) and ��(�)′

��
in (4):

�

��′
���

(
��� (
 (�))

′

��

)
=


 0(�−1×�−1)

�2	 2

�−1

����′

�2
�−1(�(�))
����′


 (23)

where

�2� 2
�−1

����′
= 2(��−1\� − ���−1�� )(��−1\� − ���−1�� )′ (24)

and �2
�−1(�(�))
����′

can be computed recursively.

To compute �
��′

���
(

��(�)′

��

)
note first that if � is a (� × �) symmetric

non-singular matrix
�
��(��−1)

��′
= (�� ⊗�)

�
��(�−1)
��′

+
(
�−1 ⊗ ��

)
�
��(�)

��′
=

0(�2×�−1). Therefore, since (�� ⊗�)
−1

=
(
�� ⊗�−1

)
,
�
��(�−1)

��′
= −

(
�� ⊗�−1

)(
�−1 ⊗ ��

)
�
��(�)

��′
= −

(
�−1 ⊗�−1

)
�
��(�)

��′
. We also apply the following prop-

erty of the vec operator: If � is an (�×�) matrix, then ���(�′) = �������(�),
where ���� is the (��×��) commutation matrix.

�
��′

���
(

��(�)′

��

)
= −

{
(�3 ⊗ � ′��)

�
��′

���
[
(���)

−1
]
+
[
(���)

−1 ⊗ ��−1

]
�

��′
��� (� ′��)

}

3



= −
{
(�3 ⊗ � ′��)

[
−
(
(���)−1 ⊗ (���)−1

)]
�
��′

��� [���] +
[
(���)−1 ⊗ ��−1

]
�
��′

��� (� ′��)
}

= −
{
−
(
(���)

−1 ⊗ � ′��(���)
−1

)
�
��′

��� [���] +
[
(���)

−1 ⊗ ��−1

]
�
��′

��� (� ′��)
}

= −
{
−
(
(���)

−1 ⊗ � ′��(���)
−1

)
�
��′

��� [���] +
[
(���)

−1 ⊗ ��−1

]
�
��′

��� (� ′��)
}

�
��′

���
(

��(�)′

��

)
= −

(
(���)

−1 ⊗ ��(�)′

��

)
�
��′

��� [��� (
 (�))]−
−
[
(���)

−1 ⊗ ��−1

]
�
��′

��� (� ′�� (
 (�)))
(25)

We need to compute �
��′

��� [��� (
 (�))] and
�
��′

��� (� ′�� (
 (�))). Compute
�
��′

���
(

�2��
����′

(
 (�))
)
first:

�
��′

���
(

�2��
����′ (
 (�))

)
= −0�5

{(
�3 ⊗ �
�

��

)
�
��′

(
��
��

(
 (�))
)
+

+
(
��
��

⊗ �3
)

�
��′

(
�
�

��
(
 (�))

)
+

+ ���
(

�2
�

����′

)
��(�(�))

��′
+

+� �
��′

[
���

(
�2
�

����′
(
 (�))

)]} (26)

where �
�

��
has been computed in (9) and ��

��′ in (12).

To evaluate this function we need to compute �
��′

(
�
�

��
(
 (�))

)
, ��(�(�))

��′
,

�
��′

(
��
��

(
 (�))
)
and �

��′

[
���

(
�2
�

����′
(
 (�))

)]
. For �

��′

(
�
�

��
(
 (�))

)
, we have:

�

��′

(
�	�

�

(
 (�))

)
=

��� (
 (�))

��′
+
��′�
�


�
(�)

��′
+
(

′ ⊗ �3

) �

��′
���

(
��′�
�


(
 (�))

)
(27)

where ���(�(�))
′

��
has been computed in (2), ��′

�

��
in (10), �
�

��
in (9),

�

��′
���

(
��′�
�


(
 (�))

)
=

[
0(6×�−1)

�
��′

(
�
�−1

��
(
 (�))

) ]
(28)

and the last term can be computed recursively.

For ��(�(�))
��′

, we have:

�� (
 (�))

��′
=

�	� (
 (�))

��′
�̃ − 	−2

�

�� 2
�

��′
(29)

where �
�(�(�))
��′

has been computed in (1).

For �
��′

(
��
��

(
 (�))
)
, we have:

�

��′

(
��

�

(
 (�))

)
=

�

��′

(
�	�

�

(
 (�))

)
�̃ +

�	�

�


��̃ (
 (�))

��′
(30)

where

��̃ (
 (�))

��′
=

(
2	−3

� − 6� 2
� 	

−4
�

) �	� (
 (�))
��′

+ 2	−3
�

�� 2
�

��′
(31)

4



For �
��′

[
���

(
�2
�

����′
(
 (�))

)]
, note first that �2
�

����′ = �2
�

��′��
= ��′

�

��
+ ���

��′
+

�
��
���

(
���
��′

)′
(�3 ⊗ 
). Therefore:

�
��′

[
���

(
�2
�

��′��
(
 (�))

)]
= �

��′
���

(
��′

�

��
(
 (�))

)
+

+ �
��′

���
(
���
��′

(
 (�))
)
+

+ �
��′

���
[

�
��
���

(
���
��′

)′
(�3 ⊗ 
)

] (32)

For �
��′

���
(
���
��′

(
 (�))
)
, note that since ���

(
���
��′

(
 (�))
)
= �3�3���

(
��′

�

��
(
 (�))

)
,

we have:

�

��′
���

(
���

�
′
(
 (�))

)
= �3�3

[
�

��′
���

(
��′�
�


(
 (�))

)]
(33)

It remains to compute �
��′

���
[

�
��
���

(
���
��′

)′
(�3 ⊗ 
)

]
:

�
��′

���
[

�
��
���

(
���
��′

)′
(�3 ⊗ 
)

]
= (�3 ⊗�′) �

��′
��� (�3 ⊗ 
)+

+
[(
�3 ⊗ 
′

)
⊗ �3

]
�
��′

��� (�′)
(34)

where, using property (27) of vec in Lutkepohl:

�1 ≡ �

��′
��� (�3 ⊗ 
) = (�3 ⊗�1�3 ⊗ �3)

(
���(�3)⊗

�
(�)

��′

)
(35)

�2 ≡ �

��′
���(�′) =

[
0(18×�−1)

�
��′

[
���

(
�2
�−1

����′
(
 (�))

)] ]
(36)

We now compute �
��′

���
(

�2��
��′��

(
 (�))
)
, the other missing term in (25):

�
��′

���
(

�2��
��′��

(
 (�))
)
= −0�5

{(
�3 ⊗ ��

��

)
�
��′

(
�
�

��
(
 (�))

)
+

+
(
�
�

��
⊗ ��−1

)
�
��′

(
��
��

(
 (�))
)
+

+ ���
(

�2
�

��′��

)
��(�(�))

��′
+

+� �
��′

���
(

�2
�

��′��
(
 (�))

)} (37)

where ��
��′

has been computed in (17), �
��′

(
�
�

��
(
 (�))

)
in (27), �
�

��
in (9),

��(�(�))
��′

in (29) and �2
�

��′��
in (20).

We need to compute �
��′

(
��
��

(
 (�))
)
and �

��′
���

(
�2
�

��′��
(
 (�))

)
.

�

��′

(
��

��
(
 (�))

)
= �̃

�

��′

(
�	�

��
(
 (�))

)
+
�	�

��

��̃ (
 (�))

��′
−	−2

�

�2� 2
�

����′
+2	−3

�

�� 2
�

��

�	� (
 (�))

��′

(38)
where

5



�

��′

(
�	�

��
(
 (�))

)
=

��′�
��

�
(�)

��
′

+
(

′ ⊗ ��−1

) �

��′
���

(
��′�
��

(
 (�))

)
(39)

�

��′
���

(
��′�
��

(
 (�))

)
=




0(�−1)×(�−1)
�2	 2

�−1

����′

�
��′

(
�
�−1

��
(
 (�))

)

 (40)

Finally, �
��′

���
(

�2
�

��′��
(
 (�))

)
= �

��′
���

(
��′

�

��
+ � (
 (�))′ (
(�)⊗ �3)

)
:

�
��′

���
(

�2
�

��′��
(
(�))

)
= �

��′
���

(
��′

�

��
(
(�))

)
+

+(�3 ⊗ � ′) �
��′

��� (
(�)⊗ �3)+
+
[(

′ ⊗ �3

)
⊗ ��−1

]
�
��′

���
(
� (
 (�))′

)
(41)

where, using again property (27) of vec in Lutkepohl:

 1 ≡ �

��′
��� (
(�)⊗ �3) = (�3�3 ⊗ �3)

(
�
(�)

��′
⊗ ��� (�3)

)
(42)

 2 ≡ �

��′
���

(
� (
 (�))′

)
=

[
06(�−1)×(�−1)

�
��′

���
(

�2
�−1

��′��
(
 (�))

) ]
(43)

We now have all the elements to compute the first and second derivatives of
the GARCH(1,1) variances with respect to the portfolio weigths.

6


