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Abstract

A quantile vector autoregressive (VAR) model, unlike standard VAR,

traces the interaction among the endogenous random variables at any

quantile. Forecasts of multivariate quantiles are obtained by factor-

izing the joint distribution in a recursive structure, but cannot be
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obtained from reduced form estimation. Quantile impulse response

functions are derived as direct generalization of standard VAR impulse

response functions. The model is estimated using real and financial

variables for the euro area. The dynamic properties of the system

change across quantiles. This is relevant for stress testing exercises,

whose goal is to forecast the tail behavior of the economy when hit by

large financial and real shocks.

Keywords: Regression quantiles; Multivariate quantiles; Structural VAR;

Growth at Risk.

JEL Codes: C32; C53; E17; E32; E44.

1 Introduction

Vector autoregressive (VAR) models are the empirical workhorse of macroe-

conomics. In their most basic formulation, they rely on constant coefficients

and i.i.d. Gaussian innovations. There is, however, substantial empirical

evidence that macroeconomic variables are characterized by nonlinearities

and asymmetries (Perez-Quiros and Timmermann 2000, Hubrich and Tetlow

2015, Kilian and Vigfusson 2017, Adrian et al. 2019). This paper introduces

a Quantile VAR (QVAR) model that captures such nonlinearities exploiting

the semiparametric flexibility of regression quantiles. We spell out the links

between traditional VAR and QVAR models, and show how to construct

multistep forecasts with QVAR. We introduce the law of iterated quantiles,
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which highlights the pitfall of relying on QVAR models in reduced form. By

rewriting the QVAR model as a time-varying coefficient VAR model, quantile

impulse response functions can be defined as a straightforward generalization

of the standard ones. The methodology is applied to the euro area. QVAR

provides the natural modeling framework to perform macro stress testing,

by incorporating in an internally consistent fashion the robust empirical fact

that financial shocks tend to have a strong and persistent asymmetric im-

pact on the tails of the real economy. Our empirical findings reveal that

the euro area economy exhibits different degrees of vulnerability to finan-

cial shocks at different points in time, with the months preceding Lehman’s

default standing out as particularly critical.

Quantile regression was introduced by Koenker and Bassett (1978) and

has found many applications in economics (Koenker 2005, 2017). It is a

semiparametric technique which allows different covariates to affect different

parts of the distribution. Early applications to univariate time series include

Engle and Manganelli (2004) and Koenker and Xiao (2006). White et al.

(2015) have been the first to put forward the idea of a quantile VAR. Their

focus is on high frequency financial variables, requiring an altogether different

modeling strategy than for macroeconometric applications. One important

issue White et al. (2015) have been grappling with is the concept of mul-

tivariate quantile. In fact, they refer to pseudo quantile impulse response

functions, explicitly acknowledging the difficulty of extending the concept of

impulse response functions to quantiles. Extensions to multivariate quantile
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models are not straightforward. Hallin and Šiman (2017) discuss the theo-

retical difficulties of the concept of multivariate quantiles, showing how such

extensions are not unique and still object of active research. In this paper, we

follow the stratified modeling strategy of Wei (2009), because it provides the

most direct link to the VAR literature. Wei’s (2009) suggestion is to model

multivariate quantiles by factorizing the contemporaneous joint distribution

of random variables into marginal and conditional distributions. This cor-

responds to the recursive structural estimation strategy of VAR, which in

turn is equivalent to the popular Cholesky decomposition of the reduced

form VAR residuals. A similar triangular structure is adopted by Koenker

and Ma (2006), although in a cross-sectional context. The extension of the

numerous identification strategies proposed in the VAR literature (Ramey

2016) to the QVAR context constitutes an important area of research. The

control variate approach by Koenker and Ma (2006) and the quantile instru-

mental variable estimation of Chernozhukov and Hansen (2005) are available

tools to extend the research in this direction. Recent independent contribu-

tions deal with QVAR (Schüler 2014, Montes-Rojas 2019), quantile impulse

response functions (Han, Jung and Lee 2019) and identification (Ruzicka

2020). Chavleishvili et al. (2021) present an application of QVAR for macro-

prudential policy.

We estimate a QVAR model on euro area data for industrial production

growth and an indicator of financial distress, and perform three types of

exercises. First, we estimate euro area growth at risk, defined as the 10%
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quantile of industrial production growth. We find that severe financial shocks

have an asymmetric impact on the distribution of the real variable. Modeling

the conditional mean with a standard VAR seriously underestimates these

macro-financial dynamics in times of stress, and underscores the potential

of QVAR models for financial stability purposes. These results are broadly

in line with those found by Adrian et al. (2019) for the U.S. economy. The

empirical model estimated by Adrian et al. (2019) is equivalent to estimating

only one equation of our QVAR model. Estimating the full QVAR allows us

to perform impulse response analyses. We find that by hitting the system

with a financial shock there is a strong, persistent and asymmetric impact

on the distribution of industrial production, which takes about two years to

be absorbed.

Second, one important policy application of QVAR is to stress testing.

QVAR gives the flexibility to assess the impact of any future quantile re-

alization. At its core, stress testing is a forecast of what happens to the

system when hit by an arbitrary sequence of negative shocks. Stress scenar-

ios can therefore be defined as a series (to be chosen by the policy maker

or calibrated to past crises) of future quantile realizations within the QVAR

system. We forecast euro area growth under alternative stress scenarios. If

the euro area is hit by a sequence of six monthly consecutive financial and

real 10% quantile realizations, its industrial production contracts by a maxi-

mum amount of about 4% if the stress scenario were applied in August 2008

and by less than 2% in July 2018. This contrasts with a median forecast
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(that is, a sequence of median realizations of the endogenous variables) of

industrial production hovering around 0% at the same points in time.

Third, we perform a counterfactual scenario analysis before Lehman Broth-

ers’ default and replay this scenario at each point in time. Using estimates

up to August 2008, we find evidence of sizable and unprecedented downside

risk to the euro area real economy already in mid 2007. Such counterfactual

exercises can help policy makers to better understand the financial stability

risks to the economy and put them in an historical perspective.

The paper is organized as follows. Section 2 introduces the QVAR model.

It provides the links with standard OLS VAR and derives its forecasting

properties. Section 3 estimates the QVAR model for the euro area, performs a

stress testing exercise and estimates the counterfactual scenario of Lehman’s

bankruptcy at each point in time. Section 4 concludes.

2 Quantile vector autoregression

This section introduces and studies the properties of QVAR. It starts by

defining the model in section 2.1, it shows how to construct forecasts (section

2.2) and discusses the implications of the law of iterated quantiles (section

2.3). Section 2.4 introduces the concept of quantile impulse response func-

tions. Section 2.5 generalizes the results to any desired number of lags and

Section 2.6 contains details about estimation and asymptotics.
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2.1 Quantile VAR(1)

QVAR can be seen as a special case of White et al. (2015) and as a general-

ization of the univariate quantile autoregression model proposed by Koenker

and Xiao (2006). We combine it with the triangular structure proposed by

Wei (2009), to address the issue of multivariate quantile. We adopt Wei’s

approach because of its simplicity and because it provides the multivariate

quantile counterpart of the Cholesky decomposition, the most commonly

used identification strategy for structural VAR. Hallin and Šiman (2017)

review the most recent literature on extensions of traditional single-output

quantile regression methods to the multiple-output setting. This is an active

area of research, which hopefully can bring further insights also for applica-

tions to QVAR.

Consider a time series vector {Yt} ≡ {[Y1t, . . . , Ynt]′}. For our purposes,

it is important to define a recursive information set, which allows us to work

with the stratified modeling strategy suggested by Wei (2009).

Definition 1 (Recursive information set) — The recursive informa-

tion set is defined as:

Ω1t ≡ {Yt−1, Yt−2, . . .}

Ωit ≡ {Yi−1,t,Ωi−1,t} i = 2, . . . , n

According to this definition, the recursive information set Ω2t, say, contains
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all the lagged values of Yt as well as the contemporaneous value of Y1t.

We say that {Yt} follows a QVAR(1) process if the recursive θi quantile

of Yit can be written as:

Qθ1(Y1t|Ω1t) = ω1(θ1) + a11(θ1)Y1,t−1 + a12(θ1)Y2,t−1 + . . .+ a1n(θ1)Yn,t−1

Qθ2(Y2t|Ω2t) = ω2(θ2) + a021(θ2)Y1t+

+ a21(θ2)Y1,t−1 + a22(θ2)Y2,t−1 + . . .+ a2n(θ2)Yn,t−1

...

Qθn(Ynt|Ωnt) = ωn(θn) + a0n1(θn)Y1t + . . .+ a0n,n−1(θn)Yn−1,t+

+ an1(θn)Y1,t−1 + an2(θn)Y2,t−1 + . . .+ ann(θn)Yn,t−1

for any θi ∈ (0, 1), i ∈ {1, . . . , n}. When n = 1, this simplifies to the quantile

autoregressive process of Koenker and Xiao (2006).

In more compact notation, we write:

Qθ(Yt|Ωt)︸ ︷︷ ︸
n×1

= ω(θ)︸︷︷︸
n×1

+A0(θ)︸ ︷︷ ︸
n×n

Yt︸︷︷︸
n×1

+A1(θ)︸ ︷︷ ︸
n×n

Yt−1︸︷︷︸
n×1

(1)

where θ ∈ (0, 1)n and the other elements stack the appropriate terms. The

matrix A0(θ) is a lower triangular n× n coefficient matrix, with zeros along

the main diagonal. In the context of the VAR literature, this representation

is equivalent to identification of the system by assuming a Cholesky decom-

position of the variance covariance matrix of the residuals from a standard

reduced form VAR (see, for instance, chapter 2 of Lütkepohl 2005).
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The conditions for the QVAR process (1) to be covariance-stationary are

given in Proposition 1, which is an extension of the result of Koenker and

Xiao (2006). For a sequence of n-vectors of i.i.d. standard uniform random

variables {Ut}, the QVAR process (1) can be written as:

Yt = ω0(Ut) + A0(Ut)Yt + A1(Ut)Yt−1, (2)

such that each Yit, given the recursive information set of Definition 1, is mono-

tonically increasing in Ut. Defining the terms ν(Ut) = [I − A0(Ut)]
−1ω0(Ut)

and B(Ut) = [I − A0(Ut)]
−1A1(Ut), the QVAR process can equivalently be

written as Yt = ν(Ut) +B(Ut)Yt−1.

Proposition 1 (Stationarity of the QVAR process) — Assume that:

1. ν(Ut)− E[ν(Ut)] is a vector of i.i.d. random variables with zero mean,

finite variance and continuous density function;

2. the matrix E[B(Ut)⊗B(Ut)] has the largest eigenvalue less than one in

absolute value.

Then the QVAR process (2) is covariance stationary and satisfies

1√
T

T∑
t=1

(Yt − µY ) ∼ N

(
0, lim

T→∞

1

T

T∑
t=1

E (Yt − µY ) (Yt − µY )′
)
,

where µY = [I − E[B(Ut)]]
−1 E[ν(Ut)].

Proof — See appendix.
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Equation (4) in Koenker and Xiao (2006) can be readily extended to

QVAR, to give an example of how a QVAR process can be globally stationary,

but display at the same time local, i.e. quantile specific, explosive behavior.

To further understand the link with the traditional VAR, the QVAR

model (2) can be interpreted as a VAR model with time series dependence

in its error structure:

Yt = ω0 + A0Yt + A1Yt−1 + εt (3)

where ω0 = E(ω(Ut)), Ai = E(Ai(Ut)) for i = 0, 1, εt = ω(Ut) − ω0 +

(A0(Ut) − A0)Yt + (A1(Ut) − A1)Yt−1. If the data generating process was a

standard VAR with i.i.d. innovations, then the innovations would simplify to

εt = ω(Ut) − ω0, which in fact is an i.i.d. sequence. Under this assumption,

the VAR and QVAR are characterized by identical dynamics. The more

general model (1) allows for a richer structure in the data.

Model (1) implies that the quantile specification is monotonically increas-

ing in θ. If the quantile model is correctly specified, then the population

quantiles are monotonic. This is obviously the case when the underlying

DGP is a standard VAR with i.i.d. innovations. If the quantile model is mis-

specified, quantile monotonicity may not be satisfied. In that case, QVAR

models can still be interpreted as useful local linear approximations of the

data generating process, as discussed in Koenker and Xiao (2006) for univari-

ate models. Relative to the standard VAR, the QVAR estimate can therefore
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shed additional light into the dynamic properties of the random variables of

interest. If quantile crossing is of concern, one can use techniques such as the

monotonization method by Chernozhukov et al. (2010), the dynamic additive

quantile specification of Gourieroux and Jasiak (2008), or the isotonization

method suggested by Mammen (1991).

2.2 Forecasting with QVAR

Generic dynamic quantile forecasts can be produced following the stratified

modeling approach described by Wei (2009). See also section 17.9 of Xiao

(2017) for an analogous forecasting procedure for the univariate case.

According to Lemma 1 of Wei (2009), when the joint distribution of Yt is

absolutely continuous, there is a one-to-one continuous mapping (also known

as Rosenblatt’s transformation) between the sample space [Y1t, . . . , Ynt] and

the hypercube (0, 1)n. To generate a p-step ahead forecast, consider an n-

vector u∗1 whose elements are random draws from the i.i.d. uniform distribu-

tion with support on (0, 1). Then a draw from the one-step ahead forecast

distribution of YT+1 is:

Y ∗T+1 = (In − A0(u
∗
1))
−1(ω(u∗1) + A1(u

∗
1)YT )

where In is the n-dimensional identity matrix.

Conditional on this draw, a draw from the two-step ahead forecast dis-
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tribution of YT+2 is:

Y ∗T+2 = (In − A0(u
∗
2))
−1(ω(u∗2) + A1(u

∗
2)Y

∗
T+1)

where u∗2 is another n-vector with i.i.d. random draws from the standard

uniform distribution. Iterating this process forward, it is possible to obtain

a sample path of any desired p length:

(Y ∗T+1, Y
∗
T+2, . . . , Y

∗
T+p) (4)

Under the regularity conditions ensuring consistent estimation of the parame-

ters of the QVAR, with sufficiently large sample size, repeating the procedure

provides a sequence of random draws from the forecast conditional distribu-

tion of YT+p.

To clarify the intuition behind the mechanics of quantile forecasting, con-

sider forecasting the sequence of medians. Denoting (with slight abuse of

notation) the respective matrices with ω(.5), A0(.5) and A1(.5), the sequence

of median forecasts p-steps ahead is
∑p−1

h=0B(.5)hν(.5) + B(.5)pYT , where

ν(.5) ≡ (In − A0(.5))−1ω(.5) and B(.5) ≡ (In − A0(.5))−1A1(.5). This is

the median counterpart of the standard mean VAR forecast. However, as ex-

plained in the next subsection, this forecast does not coincide with the median

of the p-step ahead forecast distribution. Such a forecast can be produced

following the simulation procedure discussed in the previous paragraph.

Unlike the classical VAR, QVAR can forecast any desired sequence of
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quantiles. This provides the natural environment to perform stress testing

exercises. A policy maker interested in how the endogenous variables react

to a given stress scenario can first define the scenario by choosing a series of

future tail quantiles of interest (say, 10%), and then obtain the forecast of

the endogenous variables conditional on the chosen scenario.

As discussed by Wei (2009), switching the order in which one constructs

the stratified model provides another estimate of the joint distribution. With

an n-variate QVAR, there are n! possible orderings. If a particular ordering

is justified by economic reasoning (as in a Cholesky decomposition), it can be

used as primary order and be given a structural interpretation, as discussed

in section 2.4. Otherwise, one can estimate the model using alternative

orderings and combine the data for a more complete and robust covering of

the sample space.

2.3 The Law of Iterated Quantiles

Unlike with traditional VAR, the reduced form of model (1) cannot be used

for forecasting.

Let us work with a specific example to illustrate the intuition. Consider

a bivariate quantile version of (1). The model can be rewritten as:

Y1t = ω1(θ1) + a11(θ1)Y1,t−1 + a12(θ1)Y2,t−1 + ε1t(θ1) (5)

Y2t = ω2(θ2) + a021(θ2)Y1t + a21(θ2)Y1,t−1 + a22(θ2)Y2,t−1 + ε2t(θ2) (6)
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where the error terms satisfy the property P (ε1t(θ1) < 0|Ω1t) = θ1 and

P (ε2t(θ2) < 0|Ω2t) = θ2.

The θ2 quantile of Y2t conditional on Ω2t = {Y1t, Yt−1} is:

Qθ2(Y2t|Ω2t) = q2θ2(Yt−1) + a021(θ2)Y1t

where q2θ2(Yt−1) ≡ ω2(θ2)+a21(θ2)Y1,t−1+a22(θ2)Y2,t−1. This quantity is still a

random variable at time t−1, because of the term a021(θ2)Y1t. Consider now

the θ1 quantile of Y1t, which in the current example is simply Qθ1(Y1t|Ω1t) =

q1θ1(Yt−1), where q1θ1(Yt−1) ≡ ω1(θ1)+a11(θ1)Y1,t−1+a12(θ1)Y2,t−1. If a021(θ2) >

0,1 the θ1 quantile of the θ2 quantile of Y2t is:

Qθ1((Qθ2(Y2t|Ω2t)|Ω1t) = q2θ2(Yt−1) + a021(θ2)q
1
θ1

(Yt−1)

The logic behind such iteration is the same as the simulation procedure

described in the previous subsection. The following theorem reformulates the

quantile forecasting iterating procedure in a way that allows us to draw com-

parisons with the law of iterated expectations used for forecasting expected

values.

Theorem 1 (Law of Iterated Quantiles) — Define εit(θi) ≡ Yit −

Qθi(Yit|Ωit), for i ∈ [0, . . . , n], where Qθi(Yit|Ωit) is a generic element of

1If a021(θ2) < 0, the following computation gives the 1− θ1 quantile.
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the vector defined in (1). Then:

Qθ1

(
. . . Qθi−1

(Qθi (ε1t (θ1) + . . .+ εi−1,t (θi−1) + εit (θi) |Ωit) |Ωi−1,t) . . . |Ω1t

)
= 0

Proof — See appendix.

A key difference with the law of iterated expectations is that the quantile

of the sum of random variables is not necessarily equal to the quantile of the

quantile of the sum. The important implication is that one should be careful

in forecasting using parameter estimates from a QVAR in reduced form, as

proposed for instance by Montes-Rojas (2019). Continuing with the example

helps to clarify the issue. The reduced form version of model (5)-(6) gives

for the second equation:

Y2t = [ω2(θ2) + a021(θ2)ω1(θ1)] + [a21(θ2) + a021(θ2)a11(θ1)]Y1,t−1+

[a22(θ2) + a021(θ2)a12(θ1)]Y2,t−1 + [ε2t(θ2) + a021(θ2)ε1t(θ1)]

Unless any contemporaneous structural relationship between the two endoge-

nous variables is ruled out by setting a021(θ2) = 0, the residual does not

satisfy the usual quantile regression restriction:

Qθ2(ε2t(θ2) + a021(θ2)ε1t(θ1)|Ω1t) 6= 0

and the parameter estimates of the second reduced form equation would
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depend also on θ1. The forecasting strategy of the previous subsection would

therefore be no longer valid, because it is based on independent draws from

the multivariate standard uniform distribution, for given parameter estimates

of the two equations (5)-(6).2

The situation is different with standard VAR, as in that case the law of

iterated expectations implies that E(ε2t + a021ε1t|Ω1t) = E(E(ε2t + a021ε1t|

Ω2t)|Ω1t) = 0, where ε1t and ε2t denote the residuals for the standard VAR

and a021 the corresponding contemporaneous coefficient.

2.4 Quantile impulse response functions

If the recursive model can be given a structural interpretation, it is possible

to derive a structural quantile impulse response function.

Model (1) can be rewritten as a random coefficient model. Given a se-

quence of i.i.d. n-variate standard uniform random variables {Ut}, setting

ω0 = E(ω(Ut)) and εt = ω(Ut)− ω0 gives:

Yt = ω0 + A0(Ut)Yt + A1(Ut)Yt−1 + εt (7)

= ν(Ut) +B(Ut)Yt−1 + (In − A0(Ut))
−1εt

where ν(Ut) = [In − A0(Ut)]
−1ω0 and B(Ut) = [In − A0(Ut)]

−1A1(Ut).

2Another way to make the same point is that each equation of the reduced form QVAR
can be used to recover the marginal distributions of the endogenous random variables.
It is however impossible to recover a joint distribution from the marginal distributions
without further assumptions, such as independence or a specific copula function.
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In a standard VAR model, a shock to variable i at time t is affecting

the forecast distribution only via the conditional expectations. Since it is

a pure location model, a shift in the conditional expectation produces a

parallel shift of the whole distribution and therefore of all its quantiles. The

impulse response functions of the conditional expectation and the conditional

quantiles would be identical.

In the case of QVAR, the shock is affecting all the quantiles in a poten-

tially different way. Define the shock to the structural residuals of variable

i, for i = 1, . . . , n, as follows:

ε̈it = εt + siδ

where δ ∈ R and si is an n-vector of zeros with one in the ith position. Denot-

ing with Ÿt the value of the dependent variables if the shock ε̈it is applied, the

impulse is affecting the entire future distributions. Such counterfactual dis-

tributions can be estimated using the same simulation procedure described

in subsection 2.2. The quantile impulse response function can then be com-

puted as the difference in forecast distributions, conditional on the applied

shock. Denoting with Ÿ ∗T+p the corresponding draw conditional on ŸT , the

17



quantile impulse response function is:

∆i
T ≡ ŸT − YT

= (In − A0(θ))
−1siδ (8)

∆i
T+p = Ÿ ∗T+p − Y ∗T+p (9)

Notice that if one were to model only the median, this is again the median

impulse response analogue of the standard mean impulse response function:

∆i
T+p = B(.5)p(In − A0(.5))−1siδ (10)

Quantile impulse response functions, however, will generally depend on

the quantile paths which are considered.

If there are reasons to doubt the structural interpretation of the recur-

sive system (1), it becomes necessary to develop alternative strategies to

identify the structural shocks. The framework of Ma and Koenker (2006)

allows for both the contemporaneous value of the endogenous variables and

the structural residuals to affect the behavior of the following variables in a

recursive fashion and uses a control variate estimation framework for identi-

fication. Another possibility is to introduce external instruments, following

the approach of Chernozhukov and Hansen (2005). Recent independent con-

tributions that adopt alternative definitions and identification strategies for

quantile impulse response functions are Lee et al. (2021), Han et al. (2019),
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Montes-Rojas (2019) and Ruzicka (2020).

2.5 General QVAR(q) model

Model (1) can be generalized to any desired lag order q using the companion

form of the time-varying coefficient model (7). Define the pq vectors ω̄(θ) ≡

[ω′(θ), 0′, . . . , 0′]′, Ȳt+1 ≡ [Y ′t+1, Y
′
t , . . . , Y

′
t−q+2]

′, εt+1(θ) ≡ [ε′t+1(θ), 0
′, . . . , 0′]′,

and the (pq × pq) matrices

A0(θ) =



A0(θ), 0, . . . , 0

0, 0, . . . , 0

...
. . .

0, 0, . . . , 0


and A1(θ) =



A1(θ), A2(θ), . . . , Aq(θ)

Ip, 0, . . . , 0

...
. . .

0, . . . , Ip, 0


.

Then the companion form of the QVAR(q) model is:

Ȳt+1 = ω̄(θ) + A0(θ)Ȳt+1 + A1(θ)Ȳt + εt+1(θ) (11)

All the results of the previous sections extend to model (11).

2.6 Estimation and asymptotics

The recursive QVAR model (1) fits the framework of White et al. (2015),

which can therefore be used for inference. Suppose the interest lies in es-

timating p different quantiles. Let qjt (β) ≡ ω(θj) + A0(θ
j)Yt + A1(θ

j)Yt−1

and denote its ith element with qjit(β), for i = 1, . . . , n, where θj ∈ (0, 1)n
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for j = 1, . . . , p and we have made explicit the dependence on β, the vec-

tor containing all the unknown parameters in [ω(θj)]pj=1, [A0(θ
j)]pj=1, and

[A1(θ
j)]pj=1. Define the regression quantile estimator β̂ as:

β̂ = arg min
β
T−1

T∑
t=1

{
n∑
i=1

p∑
j=1

ρθji

(
Yit − qjit(β)

)}
, (12)

where ρθ (u) ≡ u(θ − I(u < 0)) is the standard check function and θji is the

ith element of the n-vector θj. The asymptotic distribution of the regression

quantile estimator is provided by White et al. (2015), under the assumption

that the process is globally stationary and ergodic:

√
T (β̂ − β∗) d−→ N(0, Q−1V Q−1) (13)

where

Q ≡
n∑
i=1

p∑
j=1

E[f jit(0)∇qjit(β∗)∇′q
j
it(β

∗)]

V ≡ E[ηtη
′
t]

ηt ≡
n∑
i=1

p∑
j=1

∇qjit(β∗)ψj(εit(θ
j
i ))

ψj(εit(θ
j
i )) ≡ θji − I(εit(θ

j
i ) ≤ 0)

εit(θ
j
i ) ≡ Yit − qjit(β∗)

and f jit(0) is the conditional density function of εit(θ
j
i ) evaluated at 0.
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The asymptotic variance-covariance matrix can be consistently estimated

as suggested in theorems 3 and 4 of White et al. (2015).3

The following corollary derives the standard errors of the forecasts.

Corollary 1 (Forecast standard errors) — Let Y ∗t+p(β̂) be the quantile

forecast associated with a given path of the simulation procedure discussed in

section 2.2, where it has been made explicit the dependence on the estimated

model parameters β̂. Then:

√
T (Y ∗t+p(β̂)− Y ∗t+p(β∗))

d−→ N(0,Φ(β∗)Q−1V Q−1Φ′(β∗)) (14)

where Φ(β∗) ≡ ∂Y ∗t+p(β
∗)/∂β′.

Proof — See appendix.

The standard errors associated with the impulse response functions (8)-

(9) can be computed in a similar fashion.

3 Stress testing the euro area economy

We estimate a QVAR(1) to model the interaction between real and financial

variables in Europe. We study the interrelationship between the euro area

industrial production growth (Y1t) and the composite indicator of systemic

stress in the financial system (CISS, Y2t) of Hollo, Kremer and Lo Duca

3Modern statistical software contain packages for regression quantile estimation and
inference. This paper uses the interior point algorithm discussed by Koenker and Park
(1996).
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(2012). Our data sample is monthly and ranges from January 1999 to July

2018. We perform three exercises. First, we estimate short term euro area

growth at risk (defined as the 10% quantile of Y1t), as a function of financial

conditions. Relative to univariate equations, estimation of the QVAR model

permits us to construct quantile impulse response functions. Second, we

forecast euro area growth under a severe stress scenario, where both the

real and financial parts of the euro area economy are hit by a sequence

of consecutive tail shocks. Third, we ask whether the QVAR methodology

could have been helpful in detecting vulnerabilities in the months preceding

Lehman Brothers’ default.

3.1 Euro area growth at risk

Adrian et al. (2019) have shown that there are substantial asymmetries in

the relationship between the US real GDP growth and financial conditions.

In particular, they find that the estimated lower quantiles of the distribution

of future GDP growth are significantly affected by financial conditions, while

the upper quantiles appear to be more stable over time. The quantile model

specification of Adrian et al. (2019) is the following:

Y1t = ω1(θ) + a11(θ)Y1,t−1 + a12(θ)Y2,t−1 + ε1t(θ)

They estimate this model for θ ∈ {0.05, 0.25, 0.75, .95}. This corresponds

to the first line of model (1) with two endogenous variables. We estimate,
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instead, the full QVAR model and study its dynamic properties:

Y1t = ω1(θ) +a11(θ)Y1,t−1 + a12(θ)Y2,t−1 + ε1t(θ) (15)

Y2t = ω2(θ) + a021(θ)Y1t+a21(θ)Y1,t−1 + a22(θ)Y2,t−1 + ε2t(θ) (16)

By ordering CISS after industrial production, we impose the structural

identification assumption that financial variables can react contemporane-

ously to real variables, but real variables react to financial developments

only with a lag. This corresponds to a Cholesky identification where shocks

to real economic variables can have an immediate impact on financial vari-

ables, while shocks to financial variables are allowed to affect real variables

only with a lag. Given the speed at which financial markets react to news,

this seems like a reasonable assumption, and it is relatively standard in the

literature (see, for instance, Sims 1980, Christiano et al. 1999, Bloom 2009,

Gilchrist and Zakraǰsek 2012, and section 2.3.1 of Ramey 2016).

Figure 1 reports the estimated quantile coefficients of (15)-(16), together

with 95% confidence intervals and the corresponding OLS estimates.4 Check-

ing condition 2 of Proposition 1 via simulation, results in the largest eigen-

value being 0.93. This implies that the system is globally stationary.

The interaction between real and financial variables can be tested by

4Estimation of the 5% and 95% quantiles may be stretching the limits of the available
sample size, which consists of 235 monthly observations. In this case, the approach of
Chernozhukov (2005) and Chernozhukov and Fernandez-Val (2011), based on extreme
value theory, may provide a better approximation to the finite sample distribution of the
quantile estimator than the one provided by White et al. (2015).
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checking whether the off-diagonal coefficients are statistically different from

zero. We observe the presence of substantial asymmetries, especially in the

a12(θ) coefficient, which cannot be detected with standard OLS models. The

coefficient estimates of a12(θ) are consistent with the findings of Adrian et

al. (2019), whereby financial conditions significantly affect the left tail of the

distribution of industrial production, but not the right tail.

Figure 2 shows that the impact of financial conditions is not only statisti-

cally significant, but also economically relevant. The figure reports the 10%

quantile one step ahead forecast of industrial production, together with the

95% confidence intervals. As a comparison, the figure also shows the 10%

quantile estimated indirectly from an OLS VAR, obtained as follows. We

first estimated the OLS version of model (15)-(16). Second, we computed

the 10% quantile of the OLS model residuals and added it to the estimated

conditional VAR mean. This procedure would be consistent if model (15)-

(16) were correctly specified for the mean and the residuals were i.i.d.

The comparison reveals the strong impact that worsening financial condi-

tions have on the left tail of the forecast distribution. In relation to the OLS

estimate, the estimated quantiles are quantitatively and statistically similar

in tranquil times, but sharply different in crisis times. This highlights how

modeling the interactions between real and financial variables with a stan-

dard OLS VAR could miss significant dynamics in the left tail, which are

relevant from a financial stability perspective.

In figure 3, we compute the quantile impulse response function of indus-
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Figure 1: Comparison of QVAR and VAR estimates

Note: Estimated coefficients of model (15)-(16) at different θ quantiles, with 95% confi-
dence intervals. The flat lines represent the corresponding OLS estimates.
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Figure 2: Euro area growth at risk

Note: Time series estimates of the 10% quantile of euro area industrial production, to-
gether with 95% confidence intervals. As a comparison, it is also reported the 10% quantile
estimated by adding to the mean the 10% quantiles of the residuals from a standard OLS
VAR. Under correct model specification, the two procedures would give consistent esti-
mates of the 10% quantile. The OLS VAR procedure, however, is not able to capture the
asymmetries between financial and real variables.
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Figure 3: Quantile impulse response functions for the euro area industrial
production

Note: The figure reports how a shock to the financial variable would affect the estimates of
future median (left panel) and 10% (right panel) quantiles of euro area industrial produc-
tion at different time horizons, conditional on a median forecast of the financial variable.
95% confidence intervals are also reported.

trial production corresponding to (8)-(9), following a one standard deviation

shock to CISS structural median residuals. The thought experiment is the

following: How different at any point in time the sequence of quantile fore-

casts would have been if we had observed a more severe realization in the

financial conditions of the euro area economy? The left panel is the quantile

impulse response function for the median forecasting path for both endoge-

nous variables. It is the median equivalent to the standard OLS impulse

response function for the mean. The QVAR model, however, allows us the

flexibility to analyze any part of the forecast distribution, for any period

ahead. The right panel of the figure reports the impulse response function

for the sequence of 10% quantiles of industrial production and the median

for CISS. It shows a stronger impact relative to the median.
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In figure 4 we report a three dimensional quantile impulse response func-

tion. It is a concise way to visualize how each quantile of industrial produc-

tion is responding to a shock to CISS. It is obtained by stacking next to each

other all the panels of Figure 3, for the median forecasting path for CISS

and different values of θ for industrial production. We did not report the

confidence intervals to avoid cluttering the chart, but they can be readily

constructed for each quantile as illustrated in Figure 3. The figure shows on

the vertical axis the magnitude of the impulse responses, on the h axis the

number of periods for which the response is computed, and on the θ axis the

quantile probabilities θ ∈ {0.05, 0.1, . . . , 0.9, 0.95}.

If the OLS VAR model were the correct representation of the dynamic

interactions between real and financial variables, all elements of this three

dimensional plot would shift in parallel and by the same magnitude across

the different quantile probabilities: in an homoskedastic OLS VAR model,

shifts in the forecast distribution are entirely driven by changes in the mean

forecast. The fact that this does not happen is a further confirmation that

OLS VAR may paint a misleading picture when the interest of the analysis is

away from the central tendency of the distribution. Consistently with Figure

2, we continue to notice substantial asymmetric impacts in different parts

of the distribution. In addition, the chart now reveals that the impact of

the shock disappears for all quantiles considered after around 24 months.

This analysis highlights one advantage of our framework. It is an internally

consistent fully dynamic model of the real and financial variables of the euro
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Figure 4: Three dimensional quantile impulse response functions

Note: The figure reports how a shock to the financial variable would affect the estimates
of the different quantiles of euro area industrial production at different time horizons,
conditional on a median forecast for CISS.

area economy, which allows us to study the propagation of shocks across the

different parts of the distribution and through time.

3.2 Forecasting growth under stress scenarios

In Figure 5, we report the multi step QVAR forecasts of industrial produc-

tion several months ahead, conditional on many different forecasting quantile
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Figure 5: Forecasting and stress testing in the euro area

Note: The figure reports the forecasts of industrial production for the euro area associated
with different scenarios. The path highlighted in blue corresponds to a scenario where
both the real and financial variables evolve according to their median values. The path
highlighted in red corresponds to the stress scenario with a 90% quantile forecast for the
financial variable and and a 10% quantile forecast for the real variable for six consecutive
months, followed by median forecasts afterwards. The panel on the left is the forecast
as of August 2008, the panel on the right as of July 2018. 95% confidence intervals are
reported around each scenario.

paths. The figure on the left reports the forecast as of September 2008 (the

month of Lehman’s default). The figure on the right is the forecast as of July

2018. Each dotted line corresponds to alternative forecasting sequences (4).

The various dots at each point in time can be thought as possible realizations

from the distribution of the future random variables, as discussed in Section

2.2.

We have highlighted two specific scenarios, both reported with the 95%

confidence intervals. The red line corresponds to a situation where the

sequence of future random variables are set to their median values. This

roughly corresponds to the results that one would obtain from a standard

OLS VAR analysis. Our framework, however, allows us also to create ar-
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bitrary stress scenarios and to assess their impact. In the same figure, we

have highlighted in blue with asterisk dots the forecast of the system asso-

ciated with the following stress testing exercise. We assume that the euro

area economy is hit by a series of six consecutive 90% quantile realizations to

its financial system and 10% quantile realizations to its real economy. After

that, we assume that the system is reverting to normal functioning, by im-

posing median realizations for all the variables. We notice that the median

scenario is very similar at the two points in time considered in this exercise.

The stress scenario, however, sees a much more severe contraction in indus-

trial production in August 2008, peaking at about -4%, than in July 2018,

where the peak is around -2%.

3.3 Counterfactual scenario analysis of Lehman Broth-

ers’ default

One year after the collapse of Lehman Brothers, Queen Elizabeth II famously

asked: Why did nobody notice it? From the perspective of the methodology

of this paper, predicting a crisis and its severity is like predicting that a

certain sequence of adverse quantile realizations will hit the system. This is

impossible. It is possible, however, to use the QVAR methodology to assess

the resilience of an economy to alternative stress scenarios.

We estimate the model (15)-(16) using data only up to August 2008, one

month before Lehman’s default. For given parameter estimates, we use the
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system to forecast industrial production six months ahead under the following

sequences of quantile realizations to define alternative scenarios:

1. Good financial scenario: sequence of six 10% quantile realizations

for both industrial production and CISS.

2. Normal financial scenario: sequence of six 10% quantile realizations

for industrial production and median realizations for CISS.

3. Bad financial scenario: sequence of six 10% and 90% quantile real-

izations for industrial production and CISS, respectively.

We apply these scenarios at each month of our sample, and report in

figure 6 the six month ahead forecasts for industrial production. It is evident

that the good and normal financial scenarios were posing little risks to the

euro area economy, since even after a sequence of six adverse quantile realiza-

tions of industrial production, growth at risk was quite contained. It is only

under the combination of adverse real and financial quantile realizations that

growth at risk is significantly affected. In fact, already in mid 2007, growth at

risk under this adverse scenario had reached unprecedented magnitudes for

the euro area, from an historical perspective. The large growth at risk under

the bad financial scenario reveals the presence of a fat left tail in the distri-

bution of the euro area industrial production, which would go unnoticed by

simply estimating the 5% growth at risk using direct estimation techniques.

More generally, such counterfactual exercises are not feasible with the di-

rect forecast approach. By directly quantile regressing industrial production
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Figure 6: Growth at risk under alternative scenarios as of August 2008

Note: Six month ahead forecast of euro area industrial production under three alternative
scenarios. The good, normal and bad scenarios are defined by a sequence of six consecutive
benign, normal and adverse quantile realizations. The parameter of QVAR are estimated
using only observations up to August 2008.
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six months ahead against current real and financial conditions, one implicitly

imposes that the system evolves according to some average scenario during

the intervening six months. While this may be a reasonable assumption if

one is interested in modeling the conditional mean of the endogenous vari-

ables, it seems like an undesirable constraint to impose when modeling their

tail behavior. Notice, however, that if one is interested in such unconditional

scenario, this can be recovered from the empirical distribution obtained by

simulating QVAR under all alternative quantile scenarios (similarly to all

the possible dotted lines of figure 5) and then choosing the desired empirical

quantile forecast.

4 Conclusion

We have developed a quantile VAR model and used it to forecast and stress

test the interaction between real and financial variables in the euro area.

Unlike OLS VAR, QVAR models each quantile of the distribution. This pro-

vides the natural modeling environment to design particular stress scenarios

and test the impact that they have on the economy. A stress scenario is just

a sequence of tail quantile realizations, which can be arbitrarily chosen by

the policy maker or calibrated to mimic previous crisis episodes. We find

the presence of strong asymmetries in the transmission of financial shocks in

the euro area, with negative financial shocks being particularly harmful. By

modeling the average interaction between the random variables, OLS VAR
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models miss most of these detrimental interactions.

Appendix — Proofs

Proof of Proposition 1 (Stationarity of the QVAR process) —

Following Koenker and Xiao (2006), the results exploits the arguments of

Nicholls (1982), chapter 2, and the central limit theorem given by The-

orem A.1.4 discussed in details in Billingsley (1961). In particular, for

ν̃t = ν(Ut) − E[ν(Ut)] + (B(Ut)− E[B(Ut))µY and Ȳt = Yt − µY , recursive

substitution gives:

Ȳt =
h−1∏
j=0

B(Ut−j)Ȳt−h +
h−1∑
j=0

Cj ν̃t−j,

where C0 = I and Cj =
∏j−1

i=0 B(Ut−i) for j ≥ 1. By the result of Nicholls

(1982), the stationary is implied by the convergence of the following term as

h→∞:

vec E

(
h−1∑
j=0

Cj ν̃t−j

)(
h−1∑
j=0

Cj ν̃t−j

)′
=

h−1∑
j=0

(EB(Ut)⊗B(Ut))
j vec E ν̃tν̃

′
t.

The result follows from E[ν̃tν̃
′
s] = 0 for t 6= s, standard matrix manipulations

and the conditions of the proposition 1. �

Proof of Theorem 1 (Law of iterated quantiles) — Start from the

35



innermost expression:

Qθi(ε1,t+1(θ1)+. . .+εi−1,t+1(θi−1)+εi,t+1(θi)|Ωit) = ε1,t+1(θ1)+. . .+εi−1,t+1(θi−1)

because, by definition Qθi(εi,t+1(θi)|Ωit) = 0 and the other terms are not

random, as they belong to the conditioning set. Repeating this reasoning for

each of the remaining terms gives the result. �

Proof of Corollary 1 (Forecast standard errors) — Consider the mean

value expansion YT+h(β̂) = YT+h(β
∗)+Φ(β̄)(β̂−β∗). The result follows from

the asymptotic properties of β̂. �
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